The Challenge

You rely on the insight a logic analyzer provides to understand the behavior of your FPGA in the context of the surrounding system. A typical approach is to take advantage of the programmability of the FPGA to route internal nodes to a small number of physical pins that a logic analyzer can measure. While this is a very useful approach, it has significant limitations.

• Since pins on the FPGA are typically an expensive resource, there are a relatively small number available for debug. This limits internal visibility (i.e. one pin is required for each internal signal to be probed).

• When different internal signals need to be accessed you must change your design to route these signals to pins. This can be time consuming and can affect the timing of the FPGA design.

• Finally, the process required to map the signal names from the FPGA design to the logic analyzer setup is manual and tedious. When new signals are routed out, the need to manually update these signal names on the logic analyzer takes additional time and is a potential source of confusing errors.

A Better Way

Collaborative development between Agilent Technologies and Xilinx have produced a faster and more effective way to use your logic analyzer to debug FPGAs and the surrounding system. The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for simple through complex debugging.

Agilent Technologies
Debug Your FPGAs Faster and More Effectively with a Logic Analyzer

The Agilent FPGA dynamic probe, used in conjunction with an Agilent logic analyzer, provides the most effective solution for debugging problems (simple through complex). The FPGA dynamic probe lets you:

- **View internal activity** — With a logic analyzer, you are normally limited to measuring signals at the periphery of the FPGA. With the FPGA dynamic probe, you can now access signals internal to the FPGA. You can measure up to 128 internal signals for each external pin dedicated to debug, unlocking visibility into your design than you never had before.

- **Make multiple measurements in seconds** — Moving probe points internal to an FPGA used to be time consuming. Now, in less than a second you can easily measure a different set of internal signals — without design changes. FPGA timing stays constant when you select new sets of internal signals for probing.

- **Leverage the work you did in your design environment** — The FPGA dynamic probe is the industry’s first tool that maps internal signal names from your FPGA design tool to your logic analyzer. Eliminate unintentional mistakes and save hours of time with this automatic setup of signal and bus names on your logic analyzer.
A Quick Tour of the Application

Design step 1: Create the ATC2 core

Use Xilinx Core Inserter or EDK to select your ATC2 parameters and to create a debug core that best matches your development needs. Parameters include number of pins, number of signal banks, the type of measurement (state or timing), and other ATC2 attributes.

Design step 2: Select groups of signals to probe

Specify banks of internal signals that are potential candidates for logic analysis measurements (using Xilinx Core Inserter or EDK).

Activate FPGA Dynamic Probe

The FPGA dynamic probe icon allows you to control the ATC2 Core and setup the logic analyzer.
A Quick Tour of the Application

Measurement setup step 1: Establish a connection between the analyzer and the ATC2 core

The FPGA dynamic probe application establishes a connection between the logic analyzer and a Xilinx cable. It also determines what devices are on the JTAG scan chain and lets you pick which one you wish to communicate with. Core and device names are user definable.

Measurement setup step 2: Map FPGA pins

Quickly specify how the FPGA pins (the signal outputs of ATC2) are connected to your logic analyzer. Select your probe type and rapidly provide the information needed for the logic analyzer to automatically track names of signals routed through the ATC2 core.

For ATC2 cores with auto setup enabled, each pin of the ATC2 core, one at a time, produces a unique stimulus pattern. The instrument looks for this unique pattern on any of its acquisition channels. When the instrument finds the pattern, it associates that instrument channel with the ATC2 output pin producing it. It then repeats the process for each of the remaining output pins eliminating the need to manually enter probe layout information.

Measurement setup step 3: Import signal names

Tired of manually entering bus and signal names on your logic analyzer? The FPGA dynamic probe application reads a .cdc file produced by Xilinx Core Inserter. The names of signals you measure will now automatically show on your logic analysis interface.
A Quick Tour of the Application

Setup Complete: Make measurements

Quickly change which signal bank is routed to the logic analyzer. A single mouse click tells the ATC2 core to switch to the newly specified signal bank without any impact to the timing of your design. To make measurements throughout your FPGA, change signal banks as often as needed. User-definable signal bank names make it straightforward to select a part of your design to measure.

Correlate internal FPGA activity with external measurements

With each new selection of a signal bank, the application updates new signal names from your design to the logic analyzer. View internal FPGA activity and time correlate internal FPGA measurements with external events in the surrounding system.

Using the FPGA Dynamic probe, each pin provides access to up to 128 internal signals. The number of debug pins can range from 4 to 128 depending on your needs. When using synchronous cores, one additional pin is used for the clock.

<table>
<thead>
<tr>
<th>Number of debug pins</th>
<th>Maximum internal signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>512</td>
</tr>
<tr>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>16</td>
<td>2048</td>
</tr>
<tr>
<td>128</td>
<td>16384</td>
</tr>
</tbody>
</table>
Agilent B4655A Specifications and Characteristics

Supported logic analyzers

<table>
<thead>
<tr>
<th>Portable and PC-hosted logic analyzers</th>
<th>16800 Series, 16900 Series, 1680 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular logic analysis systems</td>
<td>16900 Series with one or more state/timing modules: A single node-locked FPGA dynamic probe license will enable all modules within a 16900 Series system</td>
</tr>
<tr>
<td></td>
<td>U4154A logic analyzer module</td>
</tr>
</tbody>
</table>

Triggering capabilities

Determined by logic analyzer

Supported Xilinx FPGA families

Virtex-5, Virtex-4, Virtex-II Pro series, Virtex-II series, Spartan-3 series

Supported Xilinx cables (required)

Parallel 3 and 4, Platform Cable USB

Supported probing mechanisms

Soft touch (34-channel and 17-channel), Mictor, Samtec, Flying lead

FPGA dynamic probe software application

- **Maximum number of devices supported on a JTAG scan chain**: 256
- **Maximum number of ATC2 cores supported per FPGA device**: 15

Agilent trace core characteristics

<table>
<thead>
<tr>
<th>Number of output signals</th>
<th>User definable: Clock line plus 4 to 128 signals in 1 signal increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal banks</td>
<td>User definable: 1, 2, 4, 8, 16, 32, or 64</td>
</tr>
<tr>
<td>Modes</td>
<td>State (synchronous) or timing (asynchronous) mode</td>
</tr>
<tr>
<td>Compression</td>
<td>Optional 2X compression in state mode via time division multiplexing. Logic analyzer decompresses the data stream to allow for full triggering and measurement capability.</td>
</tr>
</tbody>
</table>

FPGA Resource consumption

- Approximately 1 slice required per input signal to ATC2 Core
- Consumes no BUFGs, DCM or Block RAM resources
- See resource calculator at www.agilent.com/find/fpga

Compatible design tools

<table>
<thead>
<tr>
<th>ChipScope Pro Version</th>
<th>1680, 1690, 16800, 16900 Series SW Version</th>
<th>Primary new features</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2i, 6.3i</td>
<td>2.5 or higher</td>
<td>Mouse-click bank select, graphical pin mapping, .cdc signal name import</td>
</tr>
<tr>
<td>6.2i, 6.3i</td>
<td>3.0 or higher</td>
<td>Support for Virtex-4 devices, improved JTAG drivers, single-session multi-core support, user-definable naming</td>
</tr>
<tr>
<td>7.1i</td>
<td>3.2 or higher</td>
<td>Plug & run (auto pin mapping), ATC2 “always on” option, ATC2 width + 64 banks, Platform Cable USB support, PRBS stimulus on test bank</td>
</tr>
<tr>
<td>8.2i</td>
<td>3.5 or higher</td>
<td>Support for Virtex-5 devices and 16800 Series logic analyzers</td>
</tr>
</tbody>
</table>

EDK (Embedded Development Kit)

| EDK (Embedded Development Kit) | 3.2 or higher | Support for ATC2 core using EDK flow |

Synthesis

Core Inserter produces ATC2 cores post-synthesis (pre-place and route) making the cores synthesis independent. ATC2 cores produced by Core Generator are compatible with:

- Exemplar Leonardo Spectrum
- Synopsys Design Compiler
- Synopsys Design Compiler II
- Synopsys FPGA Express
- Synplicity Synplify
- Xilinx XST

Additional information available via the Internet: www.agilent.com/find/FPGA and www.agilent.com/find/fpga_FAQ
Ordering Information

Ordering options for the Agilent B4655A FPGA dynamic probe

| Option 011 | • Entitlement certificate for perpetual node-locked license
| | • CD with application software |
| Option 012 | • Entitlement certificate for perpetual floating license
| | • CD with application software |

Related Agilent Literature

<table>
<thead>
<tr>
<th>Publication title</th>
<th>Pub number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequently Asked Questions B4655A FPGA Dynamic Probe for Xilinx Data Sheet</td>
<td>5989-1170EN</td>
</tr>
<tr>
<td>Agilent Technologies 16900 Series Logic Analysis Systems Color Brochure</td>
<td>5989-0420EN</td>
</tr>
<tr>
<td>Agilent Technologies Measurement Modules for the 16900 Series Data Sheet</td>
<td>5989-0422EN</td>
</tr>
<tr>
<td>U4154A Logic Analyzer Module Data Sheet</td>
<td>5990-7513EN</td>
</tr>
<tr>
<td>Probing Solutions for Agilent Technologies Logic Analyzers Catalog</td>
<td>5966-4632E</td>
</tr>
<tr>
<td>Agilent 16800 Series Portable Logic Analyzers Color Brochure</td>
<td>5989-5062EN</td>
</tr>
<tr>
<td>Agilent 16800 Series Portable Logic Analyzers Data Sheet</td>
<td>5989-5063EN</td>
</tr>
<tr>
<td>Agilent 1680 and 1690 Series Logic Analyzers Data Sheet</td>
<td>5988-2675EN</td>
</tr>
<tr>
<td>Planning Your Design for Debug: FPGA Dynamic Probe Design Guide</td>
<td>5989-1593EN</td>
</tr>
</tbody>
</table>

For copies of this literature, contact your Agilent representative or visit www.agilent.com/find/logic
Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

AXIe

www.axiestandard.org
AdvancedTCA® Extensions for Instrumentation and Test (AXIe) is an open standard that extends the AdvancedTCA® for general purpose and semiconductor test. Agilent is a founding member of the AXIe consortium.

LXI

www.lxistandard.org
LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

PXI

http://www.pxisa.org
PCI eXtensions for Instrumentation (PXI) modular instrumentation delivers a rugged, PC-based high-performance measurement and automation system.

Agilent Channel Partners

www.agilent.com/find/channelpartners
Get the best of both worlds: Agilent’s measurement expertise and product breadth, combined with channel partner convenience.

Agilent Advantage Services

Agilent Advantage Services is committed to your success throughout your equipment’s lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

For more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada (877) 894 4414
Brazil (11) 4197 3500
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific

Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East

Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 9276201

For other unlisted Countries:

www.agilent.com/find/contactus

Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2006, 2011
Printed in USA, March 18, 2011
5989-0423EN