Features & Benefits

3.5 GHz Bandwidth Model for Serial and Digital Applications
2.5 GHz, 1 GHz and 500 MHz Bandwidth Models for All Applications
Up to 40 GS/s Real-time Sample Rate on One Channel and Up to 10 GS/s on All Four Channels
Up to 400 Megasamples Record Length with MultiView Zoom™ Feature for Quick Navigation
>250,000 wfm/s Maximum Waveform Capture Rate
User-selectable Bandwidth Limit Filters for Better Low-frequency Measurement Accuracy
MyScope® Custom Windows and Right Mouse Click Menus for Exceptional Efficiency
Event Search and Mark to Facilitate the Comprehension of Event Relationships
Pinpoint™ Triggering Provides the Most Flexible and Highest-performance Triggering, with Over 1400 Combinations to Address Virtually Any Triggering Situation
Small Footprint and Light Weight
12.1” Largest XGA Touch-screen Display in the Industry
Communications Mask Testing
Clock Recovery from Serial Data Streams
64-Bit NRZ Serial Pattern Trigger for Isolation of Pattern-dependent Effects Up to 1.25 Gb/s
NRZ Serial Test Pattern Triggering
Low-speed Serial Protocol Triggering (I2C, SPI, RS-232, CAN)
Technology-specific Software Solutions Provide Built-in Domain Expertise for Ethernet, USB 2.0 Compliance Testing, Jitter and Timing Measurements, Power Measurements, CAN and LIN Network Design
OpenChoice® Software with Microsoft Windows XP OS Enables Built-in Networking and Extended Analysis

Applications
Signal Integrity, Jitter and Timing Analysis
Verification, Debug and Characterization of Sophisticated Designs
Debugging and Compliance Testing of Serial Data Streams for Telecom and Datacom Industry Standards
Low-speed Serial Bus Design (I2C, SPI, CAN, LIN, RS-232)
Investigation of Transient Phenomena
Power Measurements and Analysis
Spectral Analysis

Unmatched Performance for Greater Insight into Your Design to Get Your Work Done Faster
The DPO7000 Series are the new generation of real-time digital phosphor oscilloscopes and are the industry’s best solution to the challenging signal integrity issues faced by designers verifying, characterizing, debugging and testing sophisticated electronic designs. The family features exceptional performance in signal acquisition and analysis, operational simplicity and unmatched debugging tools to accelerate your day-to-day tasks. The largest screen in the industry and the intuitive user interface provide easy access to the maximum amount of information.

Unmatched Acquisition Performance
Signal Fidelity Tektronix Oscilloscopes Ensures Confidence in Your Measurement Results
High sample rate on all models, on all channels, to capture more signal details (transients, imperfections, fast edges)
– 40 GS/s on one channel on the 2.5 GHz and 3.5 GHz models
– Option 2SR to double the maximum real-time sample rate for the 500 MHz and 1 GHz models
High bandwidth up to 3.5 GHz, matched across 2, 3 or 4 channels and enabled by Tektronix proprietary DSP enhancement. The user-selectable DSP filter on each channel provides magnitude and phase correction plus extension to 3.5 GHz for more accurate signal fidelity for complex measurements. The DSP filter on each channel can also be switched off to take advantage of true 2.5 GHz analog bandwidth for applications needing the highest available raw data capture

The DPO7000 Series oscilloscopes include as a standard feature a series of user-selectable bandwidth limit filters. These filters preserve the instrument’s bandwidth roll-off characteristics, flatness, and phase linearity within the new frequency range, thereby reducing the effects of out-of-band noise on measurements. Now, designers can purchase one instrument for their highest bandwidth needs and easily optimize it to handle lower-frequency measurements as well

User-selectable bandwidth limiting choices.

Very low jitter noise floor and vertical accuracy for very accurate measurements

Contrast

Digital Phosphor Oscilloscopes
DPO7000 Series

Unmatched Performance for Greater Insight into Your Design to Get Your Work Done Faster

Unmatched Acquisition Performance
Signal Fidelity Tektronix Oscilloscopes Ensures Confidence in Your Measurement Results

High sample rate on all models, on all channels, to capture more signal details (transients, imperfections, fast edges)
– 40 GS/s on one channel on the 2.5 GHz and 3.5 GHz models
– Option 2SR to double the maximum real-time sample rate for the 500 MHz and 1 GHz models

High bandwidth up to 3.5 GHz, matched across 2, 3 or 4 channels and enabled by Tektronix proprietary DSP enhancement. The user-selectable DSP filter on each channel provides magnitude and phase correction plus extension to 3.5 GHz for more accurate signal fidelity for complex measurements. The DSP filter on each channel can also be switched off to take advantage of true 2.5 GHz analog bandwidth for applications needing the highest available raw data capture

The DPO7000 Series oscilloscopes include as a standard feature a series of user-selectable bandwidth limit filters. These filters preserve the instrument’s bandwidth roll-off characteristics, flatness, and phase linearity within the new frequency range, thereby reducing the effects of out-of-band noise on measurements. Now, designers can purchase one instrument for their highest bandwidth needs and easily optimize it to handle lower-frequency measurements as well

User-selectable bandwidth limiting choices.

Very low jitter noise floor and vertical accuracy for very accurate measurements
Digital Phosphor Oscilloscopes

DPO7000 Series

Longest acquisition of the industry to provide more resolution and longer time sequence:
- Standard 10 million data points per channel on the DPO7000 Series
- Optional up to 400 million total data points on 2.5 GHz and 3.5 GHz models
- Optional up to 200 million total data points on the 500 MHz and 1 GHz models
- Easily manage this deep record length, provide detailed comparison and analysis of multiple waveform segments with the MultiView™ feature. Automatically scroll through deep records visually or create a math expression to instantly highlight differences

Highest performance probing solutions for differential and single-ended voltage signals as well as current measurement, because accurate design verification depends on high bandwidth access to critical signals and high-fidelity signal capture

Unmatched Versatility

Get the Most of Your Oscilloscope by Fully Controlling its Waveform Acquisition and Display Parameters

You have the choice of three horizontal time base modes of operations. If you are simply doing signal exploration and want to interact with a lively signal, you will use the Automatic or interactive default mode that provides you with the liveliest display update rate. If you want a precise measurement and the highest real-time sample rate that will give you the most measurement accuracy, then the Constant Sample Rate mode is for you. It will maintain the highest sample rate and provide the best real-time resolution. The last mode is called the Manual mode because it ensures direct and independent control of the sample rate and record length.

With the MyScope® Feature, Create Your Own Control Windows With Only the Controls, Features and Capabilities That You Care About

Easily create your own personalized “toolbox” of oscilloscope features in a matter of minutes using a simple, visual, drag-and-drop process. Once created, these custom control windows are easily accessed through a dedicated MyScope button and menu selection on the oscilloscope button/menu bar, just like any other control window. You can make an unlimited number of custom control windows, enabling each person who uses the oscilloscope in a shared environment to have their own unique control window. MyScope control windows will benefit all oscilloscope users, eliminating the ramp-up time that many face when returning to the lab after not using an oscilloscope for a while, and enables the power user to be far more efficient. Everything you need is found in one control window rather than having to constantly navigate through menu after menu to repeat similar tasks.

With OpenChoice® Software, Customize Your Test and Measurement System with Familiar Analysis Tools

The analysis and networking features of OpenChoice software add flexibility to Tektronix’ Windows XP oscilloscopes: Using the fast embedded bus, waveform data can be moved directly from acquisition to analysis applications on the Windows desktop at much faster speeds than conventional GPIB transfers. Tektronix’ implementation of industry standard protocols, such as TekVISATM interface and ActiveX controls, are included for using and enhancing Windows applications for data analysis and documentation. VISA and IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using GPIB, serial data, and LAN connections from programs.
running on the instrument or an external PC. Or use the Software Developer's Kit (SDK) to help create custom software to automate multi-step processes in waveform collection and analysis with Visual BASIC, C, C++, MATLAB, LabVIEW, LabWindows/CVI and other common Application Development Environments (ADE). Integration of the oscilloscope with external PCs and non-Windows hosts is also supported by the DPO7000 Series software solutions.

In addition, the OpenChoice® architecture provides a comprehensive software infrastructure for faster, more versatile operations. Data transfer programs, such as the Excel or Word toolbar, are used to simplify analysis and documentation on the Windows desktop or on an external PC.

Accelerate the Debug of Complex Electrical Designs

FastAcq Acquisition Mode Expedites Debugging by Clearly Showing Imperfections

More than just color-grading, FastAcq enabled by Tektronix proprietary DPX® acquisition technology, captures signals up to more than 250,000 waveforms per second on all four channels simultaneously, dramatically increasing the probability of discovering infrequent fault events. And with a simple turn of the intensity knob you can clearly see “a world others don’t see,” because frequency of occurrence is color-coded. Some oscilloscope vendors claim high waveform capture rates for short bursts of time, but only the DPO7000 Series, enabled by DPX technology, can deliver these fast waveform capture rates on a sustained basis – saving minutes, hours or even days by quickly revealing the nature of faults so sophisticated trigger modes can be applied to isolate them.

The Ability to Trigger an Oscilloscope on Events of Interest is Paramount in Complex Signal Debug and Validation

Whether you’re trying to find a system error or need to isolate a section of a complex signal for further analysis, Tektronix’ Pinpoint® triggering provides the solution. The Pinpoint trigger system uses Silicon Germanium (SiGe) technology to provide trigger sensitivity of up to the bandwidth of the instrument, and allows selection of most trigger types on both A and B trigger circuits. It can capture very narrow glitches with very little trigger jitter. Other trigger systems offer multiple trigger types only on a single event (A event), with delayed trigger (B event) selection limited to edge type triggering and often do not provide a way to reset the trigger sequence if the B event doesn’t occur. But Pinpoint triggering provides a full suite of advance trigger types on both A and B trigger circuits. It can capture very narrow glitches with very little trigger jitter. Other trigger systems offer multiple trigger types only on a single event (A event), with delayed trigger (B event) selection limited to edge type triggering and often do not provide a way to reset the trigger sequence if the B event doesn’t occur. But Pinpoint triggering provides a full suite of advance trigger types on both A and B triggers with Reset triggering to begin the trigger sequence again after a specified time, state or transition so that even events in the most complex signals can be captured. Other oscilloscopes typically offer less than 20 trigger combinations; Pinpoint triggering offers over 1400 combinations, all at full performance.

With Enhanced Triggering, you can choose to compensate for the difference in time there is between the trigger path and the display path and eliminate virtually any trigger jitter at the trigger point. In this mode, the trigger point can be used as a measurement reference.

Trigger on the Most Relevant Bit Sequence of the Industry Standard Serial Bus

IC (Inter-Integrated Circuit) triggering is a standard feature and includes Start condition, Missing Acknowledge, Restart, Data Read, Address and/or Data Frame, in a 10 bit or 7 bit format with a specific selection to choose whether or not to include the R/W bit.

SPI (Serial Peripheral Interface) triggering is a standard feature and includes triggering on a data pattern within a user-definable frame. RS-232 triggering is a standard feature.

CAN (Controller Area Network) triggering is an optional feature (Opt. LSA) and includes synchronization to the Start or End of a CAN frame on any CAN high or CAN low signal, triggering on Type of Frame (Data, Remote, Overload), Identifier, Data, Missing Acknowledge, and Bit Stuffing error.
Digital Phosphor Oscilloscopes

Analog HDTV/EDTV Triggering for emerging standards like 1080i, 1080p, 720p and 480p as well as standard video triggering on any line within a field, all lines, all fields, odd or even fields for NTSC, SECAM and PAL video signals. In addition, IRE and mV graticules can be selected for easier measurements and visual inspection. This is a standard feature.

To debug serial architectures, use the serial pattern triggering option for NRZ serial data stream with built-in clock recovery (available on models DPO7254 and DPO7354 only). The instrument can recover the clock signal, identify the transitions and decode characters and other protocol data. With the combination of the Serial Trigger and Protocol Decode software, you can see the captured bit sequences decoded into their words for convenient analysis (for 8 b/10 b and other encoded serial data streams), or you can set the desired encoded words for the serial pattern trigger to capture. This serial trigger option covers NRZ serial standards up to 1.25 Gb/s.

Pattern Lock Triggering adds a new dimension to NRZ serial pattern triggering by enabling the oscilloscope to take synchronized acquisitions of a long serial test pattern with outstanding time base accuracy. Pattern lock triggering can be used to remove random jitter from long serial data patterns. Effects of specific bit transitions can be investigated, and averaging can be used with mask testing. This feature is included as part of Option PTM on the DPO7254 and 7354 models.

Large 12.1-inch XGA Display Screen
The DPO7000 Series has the largest display in the industry with a 12.1” XGA touch screen that gives up to 15% more waveform display than other oscilloscope series in its class. Ten vertical divisions give you 25% more vertical measurement resolution.

Unmatched Usability
The TekVPI™ probe interface provides versatility and ease of use enabled by intelligent bi-directional oscilloscope-to-probe communication.

The DPO7000 Series are fast-responding instruments and contain a comprehensive suite of features, such as a touch screen, shallow menu structures, intuitive graphical icons, knob-per-channel vertical controls, support for right mouse clicks, mouse wheel improvements, saving of waveforms and measurements available in Preview mode and Export/Save/Recall menu improvements.

Interoperability with Logic Analyzers for Digital Design and Debug
Tektronix’ Integrated View (iView™) data display enables digital designers to resolve signal integrity challenges and effectively debug and verify their systems more quickly and easily. This integration allows designers to view time-correlated digital and analog data in the same display window, and isolate the analog characteristics of the digital signals that are causing systems failures. No user calibration is required. And, once set up, the iView feature is completely automated.
More Insight into Your Complex Electrical Design for Characterization and Compliance Testing

Such as a simple math expression, waveform mask testing, a pass/fail compliance test, event searching, event marking or a custom application that you develop yourself, the DPO7000 Series Oscilloscopes offer the industry's most comprehensive set of analysis and compliance tools.

A Wide Range of Built-in Advanced Waveform Analysis Tools

Waveform cursors make it easy to measure trace-to-trace timing characteristics, while cursors that link between YT and XY display modes make it easy to investigate phase relationships and Safe Operating Area violations. Select from 53 automatic measurements using a graphical palette that logically organizes measurements into Amplitude, Time, Combination, Histogram and Communications categories. Gather further insight into your measurement results with statistical data such as mean, min, max, standard deviation and population.

Define and apply math expressions to waveform data for on screen results in terms that you can use.

Access common waveform math functions with the touch of a button. Or, for advanced applications, create algebraic expressions consisting of live waveforms, reference waveforms, math functions, measurement values, scalars and user-adjustable variables with an easy-to-use calculator-style editor.

FFT – To analyze your signal in the spectral domain, use the basic spectral (provides you with the best parameter), or use advanced spectral with the manual time base horizontal mode (to directly control the frequency span, center frequency and resolution bandwidth).

Filtering – Enhance your ability to isolate or remove some important component of your signal (noise or specific harmonics of the signal) by creating your own filters, or using the filters provided as standard with the instrument.
Jitter, Timing and Eye Diagram Analysis - Tight timing margins associated with today’s serial buses demand stable, low jitter designs. DPOJET extends the oscilloscope capability by making jitter, timing and eye diagram measurements over contiguous clock and data cycles in a single-shot real-time acquisition. With multiple measurements and a variety of analysis tools including spectral and trend plots, DPOJET quickly shows system timing under variable conditions. It also provides Rj/Dj on signals without a repeating pattern and without requiring a fixed pattern or length. You can get insight into the signal characteristics like SSC profile using the analysis features and perform pass-fail testing using eye diagram masks and limit files for testing against statistical limits using the compliance features.

This tool is available for the DPO70000 and DSA70000 Series as Opt. DJA.

Advanced Event Search and Mark (Opt. ASM) – Event Search and Mark will relieve the user from the tedious task of examining data by highlighting important events, skipping the unimportant ones and enhancing the comprehension of event relationships. You can navigate between the events of interest effortlessly. A basic event (edge-only) search and mark is provided as a standard feature; and support for more advanced event types like transition, setup and hold or logic pattern, is provided with the ASM option.

Waveform Limit Testing (Opt. LT) – This feature consists of comparing an acquired waveform to boundaries. These boundaries are typically defined by the user to specify a tolerance band around a reference waveform. If any part of the acquired waveform falls outside of the limit, the software returns a failure message and the location of the failure is shown on the waveform.

Communications Mask Testing (Opt. MTM) – This feature provides a complete portfolio of masks for verifying compliance to serial communications standards. It supports 156 Standards Masks –
- ITU-T (64 Kb/s to 155 Mb/s)
- ANSI T1.102 (1.544 Mb/s to 155 Mb/s)
- Ethernet IEEE 902.3, ANSI X3.263 (125 Mb/s to 1.25 Gb/s)
- Sonet/SDH (51.84 Mb/s to 622 Mb/s)
- Fibre Channel (133 Mb/s to 2.125 Gb/s)
- USB (12 Mb/s to 480 Mb/s)
- IEEE 1394 (491.5 Mb/s to 1.966 Gb/s)
- RapidIO (up to 2 Gb/s)
- OIF Standards (1.244 Gb/s)
- Video (143.18 Mb/s to 1.485 Gb/s)

CAN and LIN Timing and Protocol Decode Software (Opt. LSA) –

When you need to ensure seamless and reliable operation of a CAN or LIN network, this option enables CAN bus triggering and provides the solution to measure oscillator tolerance, propagation delay, and simultaneously decode CAN and LIN messages, with the protocol leveraging the trigger capabilities.

This option is offered on DPO7354, DPO7254, DPO7104 and DPO7054 as Opt. LSA.

Optional Power Measurement and Analysis (Opt. PWR) – Analyze power dissipation in power supply switching devices and magnetic components, and generate detailed reports in customizable formats. The HiRes acquisition mode delivers greater than 8 bits of vertical resolution on single-shot or repetitive signals at bandwidth up to 125 MHz. The powerful and flexible measurements, math, and math-on-math capabilities make it an ideal solution for performing power measurements, such as voltage, current, instantaneous power and energy, for power device designers.

The new TekVPI™ interface provides smart communication between the oscilloscope and the probe. TekVPI™ probe interface also provides more power to the probe interface, allowing customers to directly connect current probes to the front of the oscilloscope.
Digital Phosphor Oscilloscopes • www.tektronix.com/oscilloscopes

Characteristics

Vertical System

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>DPO7054</th>
<th>DPO7104</th>
<th>DPO7254</th>
<th>DPO7354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Channels</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth (DSP)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.5 GHz*¹</td>
</tr>
<tr>
<td>Bandwidth Enhance</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>115 ps</td>
</tr>
<tr>
<td>Hardware Analog Bandwidth (-3 dB)</td>
<td>500 MHz</td>
<td>1 GHz</td>
<td>2.5 GHz</td>
<td>2.5 GHz</td>
</tr>
<tr>
<td>Rise Time 10% to 90% (typical)</td>
<td>460 ps</td>
<td>300 ps</td>
<td>160 ps</td>
<td>145 ps</td>
</tr>
<tr>
<td>Rise Time 20% to 80% (typical)</td>
<td>310 ps</td>
<td>200 ps</td>
<td>100 ps</td>
<td>95 ps</td>
</tr>
<tr>
<td>DC Gain Accuracy</td>
<td>±1% with offset/position set to 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bandwidth Limits

Input Coupling

- AC, DC, GND

Input Impedance

- 1 MΩ ±1% with 13 pF ±2 pF or 50 Ω ± 1%

Input Sensitivity

- 1 MΩ: 1 mV/div to 10 V/div; 50 Ω: 1 mV/div to 1 V/div

Vertical Resolution

- 8 bit (>11 bits with Hi Res)

Max Input Voltage, 1 MΩ

- ±150 V CAT I, derate at 20 dB/decade to 9 V_{ref} above 200 kHz

Max Input Voltage, 50 Ω

- 5 V_{ref} with peaks less than ±24 V

Position Range

- ±5 divisions

Offset Range

- 1 mV/div to 50 mV/div: ±1 V
- 50.5 mV/div to 99.5 mV/div: ±1.5 V to 10 Divisions
- 100 mV/div to 500 mV/div: ±10 V
- 505 mV/div to 995 mV/div: ±15 V to 10 Divisions
- 1 V/div to 5 V/div: ±100V
- 5.05 V/div to 10 V/div: ±150 V to 10 Divisions

Offset Accuracy

- 1 mV/div to 9.95 mV/div: ±0.2% (offset value-position) ±0.1 div ±1.5 mV
- 10 mV/div to 99.5 mV/div: ±0.35% (offset value-position) ±0.1 div ±1.5 mV
- 100 mV/div to 1 V/div: ±0.35% (offset value-position) ±0.1 div ±15 mV
- 1.01 V/div to 10 V/div: ±0.25% (offset value-position) ±0.1 div ±150 mV

Delay Between Any Two Channels (typical)

- ≤100 ps (50 Ω, DC coupling and equal V/div at or above 10 mV/div)

Channel-to-Channel Isolation (any two channels at equal vertical scale settings) (typical)

- ≥100:1 at ≤100 MHz
- ≥30:1 between 100 MHz and 2.5 GHz
- ≥20:1 between 2.5 and 3.5 GHz

Optional Ethernet (Opt. ET3) –

Provides compliance testing for 10/100/1000Base-T signals.

Ethernet compliance testing.

Optional USB (Opt. USB) – Provides compliance testing for USB2.0 signals.

USB compliance testing.
Large 12.1-inch XGA Touch Screen Display

The DPO7000 series touch screen gives up to 15% more waveform display than other oscilloscopes of its class.

New Probe Interface

TekVPI™ probe interface provides versatility and ease of use enabled by intelligent bi-directional oscilloscope-to-probe communication.

Exceptional Performance

The fastest waveform capture rate on the highest bandwidth oscilloscope in a mid-range offering with up to 40 GS/s real-time sample rate and 400 M record length on one channel.

With MultiView Zoom™

Easily dive into very long record of acquired data, analyze multiple waveform segments simultaneously and scroll automatically through the deepest records visually.

Unmatched Usability

With MyScope® create your own control window with only the controls you care about. The versatile user interface allows you to use the touch screen or the mouse.

Accelerate the Debug of Complex Designs with Pinpoint® Triggering

Access up to 1400 trigger combinations to address virtually any triggering situations.

FastAcq Acquisition Expedites Debugging by Clearly Showing Faults

More than 250,000 waveforms per second, and with a simple turn of the intensity knob, clearly see the frequency of occurrence.

Easy Connectivity

Built-in USB port at the front for easy access to save your work on a memory stick. Most standard input/output ports available on the side of the instrument.

A Wide Range of Built-in Advanced Analysis Tools

Linked XY and YT cursors. 53 automatic measurements. Waveform boundary tolerance testing. Many math functions, some advanced (like FFT or Filtering).

For Insight into Your Low-speed Serial Designs

Serial Protocol Triggering for SPI, SPI CAN plus a complete CAN and LIN triggering and protocol analysis software package.

For Insight into Your High-speed Serial Designs

Analog MTZ Serial Pattern Triggering plus Recovered Clock and Recovered Data available on the front of the DPO7254 or the DPO7354 instruments.

A Breadth of Optional Software Packages for Expanded Waveform Analysis

Event Search and Mark for faster event analysis. Advanced Jitter and Timing, application-specific, and compliance measurements and tests.
Time Base System

<table>
<thead>
<tr>
<th></th>
<th>DPO7054</th>
<th>DPO7104</th>
<th>DPO7254/DPO7354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Base Range</td>
<td>100 ps/div to 1000 s/div</td>
<td>50 ps/div to 1000 s/div</td>
<td>25 ps/div to 1000 s/div</td>
</tr>
<tr>
<td>with Opt. 2SR</td>
<td>50 ps/div to 1000 s/div</td>
<td>25 ps/div to 1000 s/div</td>
<td>—</td>
</tr>
<tr>
<td>Time Resolution (in ET/IT mode)</td>
<td>1 ps</td>
<td>500 fs</td>
<td>250 fs</td>
</tr>
<tr>
<td>with Opt. 2SR</td>
<td>500 fs</td>
<td>250 fs</td>
<td>—</td>
</tr>
<tr>
<td>Time Base Delay Time Range</td>
<td>5 ns to 250 s</td>
<td>50 ns to 250 s</td>
<td>—</td>
</tr>
<tr>
<td>Channel-to-Channel Deskew Range</td>
<td>±75 ns</td>
<td>±75 ns</td>
<td>—</td>
</tr>
</tbody>
</table>

Delta Time Measurement Accuracy

\[(0.06/\text{sample rate}) + (2.5 \text{ ppm x Reading}) \text{ RMS}\]

Trigger Jitter (RMS)

1.5 ps\(_{\text{typical}}\) (typical) with enhanced triggering OFF

\[< 100 \text{ fs}_{\text{typical}}\] with enhanced triggering ON

Jitter Noise Floor

\[< 1 \text{ ps}_{\text{typical}}\] (<2 ps peak) for record duration <10 ps (typical)

\[< 2.5 \text{ ps}_{\text{typical}}\] for record duration <30 ms

\[< 65 \text{ parts/trillion}\] for record durations <10 s

Time Base Accuracy

\[±2.5 \text{ ppm} + \text{Aging} < 1 \text{ ppm per year}\]

Acquisition System

<table>
<thead>
<tr>
<th></th>
<th>DPO7054</th>
<th>DPO7104</th>
<th>DPO7254/DPO7354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-time Sample Rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Channel (max)</td>
<td>10 GS/s</td>
<td>20 GS/s</td>
<td>40 GS/s</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>20 GS/s</td>
<td>40 GS/s</td>
<td>—</td>
</tr>
<tr>
<td>2 Channels (max)</td>
<td>5 GS/s</td>
<td>10 GS/s</td>
<td>20 GS/s</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>10 GS/s</td>
<td>20 GS/s</td>
<td>—</td>
</tr>
<tr>
<td>3 to 4 Channels (max)</td>
<td>2.5 GS/s</td>
<td>5 GS/s</td>
<td>10 GS/s</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>5 GS/s</td>
<td>10 GS/s</td>
<td>—</td>
</tr>
</tbody>
</table>

Equivalent Time Sample Rate (max)

4 TS/s (for repetitive signals)

Maximum Record Length per Channel

<table>
<thead>
<tr>
<th></th>
<th>DPO7054</th>
<th>DPO7104</th>
<th>DPO7254/DPO7354</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Standard Configuration</td>
<td>40 M (1-CH.), 20 M (2-CH.), 10 M (4-CH.)</td>
<td>40 M (1-CH.), 20 M (2-CH.), 10 M (4-CH.)</td>
<td>40 M (1-CH.), 20 M (2-CH.), 10 M (4-CH.)</td>
</tr>
<tr>
<td>With Record Length Opt. 2RL</td>
<td>80 M (1-CH.), 40 M (2-CH.), 20 M (4-CH.)</td>
<td>80 M (1-CH.), 40 M (2-CH.), 20 M (4-CH.)</td>
<td>80 M (1-CH.), 40 M (2-CH.), 20 M (4-CH.)</td>
</tr>
<tr>
<td>With Record Length Opt. 5RL</td>
<td>200 M (1-CH.), 100 M (2-CH.), 50 M (4-CH.)</td>
<td>200 M (1-CH.), 100 M (2-CH.), 50 M (4-CH.)</td>
<td>200 M (1-CH.), 100 M (2-CH.), 100 M (4-CH.)</td>
</tr>
<tr>
<td>With Record Length Opt. 10RL</td>
<td>—</td>
<td>—</td>
<td>400 M (1-CH.), 200 M (2-CH.), 100 M (4-CH.)</td>
</tr>
</tbody>
</table>

Maximum Duration at Highest Real-time Resolution (1-CH)

<table>
<thead>
<tr>
<th></th>
<th>DPO7054</th>
<th>DPO7104</th>
<th>DPO7254/DPO7354</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>100 ps (10 GS/s)</td>
<td>50 ps (20 GS/s)</td>
<td>25 ps (40 GS/s)</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>50 ps (20 GS/s)</td>
<td>25 ps (40 GS/s)</td>
<td>—</td>
</tr>
<tr>
<td>Max Duration with Standard Record Length and Sample Rate</td>
<td>4 ms</td>
<td>2 ms</td>
<td>1 ms</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>2 ms</td>
<td>1 ms</td>
<td>—</td>
</tr>
<tr>
<td>Max Duration with Opt. 2RL</td>
<td>8 ms</td>
<td>4 ms</td>
<td>2 ms</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>4 ms</td>
<td>2 ms</td>
<td>—</td>
</tr>
<tr>
<td>Max Duration with Opt. 5RL</td>
<td>20 ms</td>
<td>10 ms</td>
<td>5 ms</td>
</tr>
<tr>
<td>With Opt. 2SR</td>
<td>10 ms</td>
<td>5 ms</td>
<td>—</td>
</tr>
<tr>
<td>Max Duration with Opt. 10RL</td>
<td>—</td>
<td>—</td>
<td>10 ms</td>
</tr>
</tbody>
</table>
FastAcq Acquisition Mode

FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events.

Maximum FastAcq Waveform Capture Rate

>250,000 waveforms/s on all 4 channels simultaneously.

Waveform Database

Accumulate waveform database providing three-dimensional array of amplitude, time and counts.

Sample

Acquire sampled values.

Peak Detect

Captures narrow glitches at all real-time sampling rates: 1/sample rate at ≤10 GS/s.

Averaging

From 2 to 10,000 waveforms included in average.

Envelope

From 2 to 10^8 waveforms included in min-max envelope.

Hi-Res

Real-time boxcar averaging reduces random noise and increases resolution.

FastFrame™ Acquisition

Acquisition memory divided into segments; maximum trigger rate >310,000 waveforms per second.

Time of arrival recorded with each event. Frame finder tool helps to visually identify transients.

Roll Mode

Up to 10 MS/s with a maximum record length of 40 M.

Acquisition Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastAcq</td>
<td>FastAcq optimizes the instrument for analysis of dynamic signals and capture of infrequent events.</td>
</tr>
<tr>
<td>Maximum FastAcq Waveform</td>
<td>>250,000 waveforms/s on all 4 channels simultaneously.</td>
</tr>
<tr>
<td>Waveform Database</td>
<td>Accumulate waveform database providing three-dimensional array of amplitude, time and counts.</td>
</tr>
<tr>
<td>Sample</td>
<td>Acquire sampled values.</td>
</tr>
<tr>
<td>Peak Detect</td>
<td>Captures narrow glitches at all real-time sampling rates: 1/sample rate at ≤10 GS/s.</td>
</tr>
<tr>
<td>Averaging</td>
<td>From 2 to 10,000 waveforms included in average.</td>
</tr>
<tr>
<td>Envelope</td>
<td>From 2 to 10^8 waveforms included in min-max envelope.</td>
</tr>
<tr>
<td>Hi-Res</td>
<td>Real-time boxcar averaging reduces random noise and increases resolution.</td>
</tr>
<tr>
<td>FastFrame™ Acquisition</td>
<td>Acquisition memory divided into segments; maximum trigger rate >310,000 waveforms per second.</td>
</tr>
</tbody>
</table>

Pinpoint® Trigger System

<table>
<thead>
<tr>
<th>Mode</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Internal DC Coupled</td>
<td>0.7 div DC to 50 MHz increasing to 1.2 div at rated analog bandwidth (typical); 2.5 div at 3.5 GHz with DSP bandwidth enhance</td>
</tr>
<tr>
<td>Sensitivity External (Auxiliary Input) 1 MΩ</td>
<td>250 mV from DC to 50 MHz increasing to 350 mV at 250 MHz (typical).</td>
</tr>
<tr>
<td>Trigger Characteristics</td>
<td></td>
</tr>
<tr>
<td>A Event and Delayed</td>
<td>Edge, Giltch, Runt, Width, Transition Time, Timeout, Pattern, State, Setup/Hold, Window – all except Edge, Pattern and State can be Logic State qualified by up to two channels</td>
</tr>
<tr>
<td>B Event Trigger Types</td>
<td>2C, SPI and RS-232 (standard), CANbus available as Opt. LSA. Trigger on address, data and special handshaking states and other conditions</td>
</tr>
<tr>
<td>Main Trigger Modes</td>
<td>Auto, Normal and Single</td>
</tr>
<tr>
<td>Enhanced Triggering</td>
<td>User-selectable; it corrects the difference in timing between the trigger path and the acquired data path (it supports all Pinpoint® trigger types on both A- and B-Events except pattern trigger and not available in FastAcq).</td>
</tr>
<tr>
<td>Communications-related Triggers</td>
<td>Requires Opt. MTM. Support for AMI, HDB3, BnZS, CM, MLT3 and NRZ/encoded communications signals. Select among isolated positive or negative one, zero pulse form or eye patterns as applicable to the standard.</td>
</tr>
<tr>
<td>Serial Pattern Trigger</td>
<td>On DPO7254 or DPO7354 only, and requires Opt. PTM. Up to 64 bit serial word recognizer, it’s specified in binary (high, low, don’t care) or hex format. Trigger on NRZ-encoded data up to 1.25 Gb/s.</td>
</tr>
<tr>
<td>Video Type Trigger Formats</td>
<td>Triggers from negative sync composite video, field 1 or field 2 for interlaced systems, any field, and Field Rates specific line, or any line for interlaced or non-interlaced systems. Supported systems include NTSC, PAL, SECAM and HDTV 1080/24sF, 1080p/25, 1080i/50, 1080i/60, 1080p/24, 720p/60, 480p/60.</td>
</tr>
<tr>
<td>Clock Recovery System</td>
<td>On DPO7254 or DPO7354 only and requires Opt. PTM or MTM</td>
</tr>
<tr>
<td>Clock Recovery Phase Locked Loop Bandwidth</td>
<td>Fixed at FBaud/500</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>1.5 MBaud to 1.25 GBaud</td>
</tr>
<tr>
<td>Clock Recovery Jitter (RMS)</td>
<td>20 ps RMS + 1.25% Unit Interval RMS for PRBS data patterns. 20 ps RMS + 1.25% Unit Interval RMS for repeating “0011” data pattern</td>
</tr>
<tr>
<td>Tracking/Acquisition Range</td>
<td>5% of requested baud (typical)</td>
</tr>
<tr>
<td>Minimum Signal Amplitude</td>
<td>Needed for Clock Recovery</td>
</tr>
<tr>
<td>Trigger Level Range Internal</td>
<td>±12 divisions from center of screen</td>
</tr>
<tr>
<td>AUX Trigger</td>
<td>TekVPI interface; ±5 V (50 Ω); 150 V CAT I, 0 decade to 9 V max above 200 KHz (1 MΩ)</td>
</tr>
<tr>
<td>Line</td>
<td>Fixed at 0 V</td>
</tr>
<tr>
<td>Trigger Coupling</td>
<td>DC, AC (attenuates <60 Hz), HF Rej (attenuates >30 kHz), LF Rej (attenuates <80 kHz), Noise Reject (reduces sensitivity)</td>
</tr>
<tr>
<td>Trigger Holdoff Range</td>
<td>250 ns min to 12 s max</td>
</tr>
</tbody>
</table>
Trigger Modes

- **Edge** – Positive or negative slope on any channel or front panel auxiliary input. Coupling includes DC, AC, noise reject, HF reject and LF reject.
- **Glitch** – Trigger on or reject glitches of positive, negative or either polarity. Minimum glitch width is down to 170 ps (typical) with re-arm time of 250 ps (for DP07254 or DP07354).
- **Width** – Trigger on width of positive or negative pulse either within or out of selectable time limits down to 225 ps.
- **Runt** – Trigger on a pulse that crosses one threshold but fails to cross a second threshold before crossing the first again. Event can be time- or logic-qualified.
- **Timeout** – Trigger on an event which remains high, low or either, for a specified time period. Selectable from 300 ps.
- **Transition** – Trigger on pulse edge rates that are faster or slower than specified. Slope may be positive, negative or either.
- **Setup/Hold** – Trigger on violations of both setup and hold time between clock and data present on any two input channels.
- **State** – Any logical pattern of channels (1, 2, 3) clocked by edge on channel 4. Trigger on rising or falling clock edge.
- **Window** – Trigger on an event that enters or exits a window defined by two user-adjustable thresholds. Event can be time- or logic-qualified.
- **Trigger Delay by Time** – 5 ns to 250 s.
- **Trigger Delay by Events** – 1 to 10,000,000 events.

Window Functions

- **Frequency Domain Functions** – Spectral Magnitude and Phase, Real and Imaginary Spectra.
- **Phase Centroids** – Magnitude: Linear, dB, dBm. Phase: Degrees, radians, group delay.

Search and Mark Events

- **Search** – Search positive, negative slopes or both on any channel. Event table summarizes all found events. All events are time stamped in reference to trigger position. Users can choose to stop acquisitions when an event is found.
- **Mark** – Search glitches or runts, as well as transition rate, pulse width, setup and hold, timeout, window violations or find any logic or state pattern on any number of channels.

Waveform Measurements

- **Automatic Measurements** – 53, of which eight can be displayed on screen at any one time; measurement statistics, user-definable reference levels, measurement within gates isolating the specific occurrence within an acquisition to take measurements on.
 - **Amplitude Related** – Amplitude, High, Low, Minimum, Maximum, Peak to Peak, Mean, Cycle Mean, RMS, CycleRatio, Positive Overshoot, Negative Overshoot.
 - **Combination** – Area, Cycle Area, Phase, Burst Width.

Histogram Related

- Waveform Count, Hits in Bin, Peak Hits, Median, Maximum, Minimum, Peak-to-Peak, Mean (μ), Standard Deviation (σ), μ±1σ, μ±2σ, μ±3σ.

Eye Pattern Related

- Extinction Ratio (absolute, DB), Eye Height, Eye Width, Eye Top, Eye Base, Crossings %, Jitter (p-p, RMS, σ), Noise (p-p, RMS), Signal/Noise Ratio, Cycle Distortion, Q-Factor.

Waveform Processing/Math

- **Arithmetic** – Add, Subtract, Multiply, Divide Waveforms and Scalars.
- **Algebraic Expressions** – Define extensive algebraic expressions including Waveforms, Scalars, User-adjustable Variables and Results of Parametric Measurements e.g. integral (CH1-Mean(CH1)) x 1.414 x VAR1).
- **Math Functions** – Average, Invert, Integrate, Differentiate, Square Root, Exponential, Log10, Log2, Abs, Ceiling, Floor, Min, Max, Sin, Cos, Tan, ASin, ACos, Atan, Sinh, Cosh, Tanh.
- **Relational** – Boolean result of comparison >, <, >=, <=, ==, !=.
- **Spectral Magnitude** – Linear, dB, dBm.
- **Phase Centroids** – Degrees, radians, group delay.
- **RER and multirate**

Display Characteristics

- **Display Type** – Liquid crystal active-matrix color display.
- **Display Size** – Diagonal: 307.3 mm (12.1 in.).
- **Display Resolution** – XGA 1280 horizontal x 768 vertical pixels.
- **Waveform Styles** – Vectors, Dots, Variable Persistence, Infinite Persistence.
- **Color Palettes** – Normal, Green, Gray, Temperature, Spectral and User-defined.
- **Display Format** – YT, XY.

Computer System and Peripherals

- **Operating System** – Windows XP.
- **CPU** – Intel Pentium 4, 3.4 GHz processor.
- **PC System Memory** – 2 GB.

Input/Output Ports

- **USB 2.0 Port** – Front-panel USB interface and hub.
- **Mouse** – Optical wheel mouse, USB interface.
- **Printer** – Thermal printer; fits in accessory pouch provided with instrument.
- **Keyboard** – Order 119-7083-00 for small keyboard (fits in pouch); USB interface and hub.

Front Panel

- **Probe Compensator Output** – Front panel pins.

Display Size

- **Display** – Diagonal: 307.3 mm (12.1 in.).
- **Display Resolution** – XGA 1280 horizontal x 768 vertical pixels.
- **Waveform Styles** – Vectors, Dots, Variable Persistence, Infinite Persistence.
- **Color Palettes** – Normal, Green, Gray, Temperature, Spectral and User-defined.
- **Display Format** – YT, XY.
- **Computer System and Peripherals**
- **Operating System** – Windows XP.
- **CPU** – Intel Pentium 4, 3.4 GHz processor.
- **PC System Memory** – 2 GB.

Hard Disk Drive – Rear-panel, removable hard disk drive, 80 GB capacity.

CD-RW Drive – Front-panel CD-RW drive with CD creation software application.

DVD Drive – Read only.

Mouse – Optical wheel mouse, USB interface.

Printer (optional) – Thermal printer; fits in accessories pouch provided with instrument.

Keyboard – Order 119-7083-00 for small keyboard (fits in pouch); USB interface and hub.

Input/Output Ports

Front Panel

- **Probe Compensator Output** – Front panel pins.

Display Size

- **Display** – Diagonal: 307.3 mm (12.1 in.).
- **Display Resolution** – XGA 1280 horizontal x 768 vertical pixels.
- **Waveform Styles** – Vectors, Dots, Variable Persistence, Infinite Persistence.
- **Color Palettes** – Normal, Green, Gray, Temperature, Spectral and User-defined.
- **Display Format** – YT, XY.

Computer System and Peripherals

- **Operating System** – Windows XP.
- **CPU** – Intel Pentium 4, 3.4 GHz processor.
- **PC System Memory** – 2 GB.

Hard Disk Drive – Rear-panel, removable hard disk drive, 80 GB capacity.

CD-RW Drive – Front-panel CD-RW drive with CD creation software application.

DVD Drive – Read only.

Mouse – Optical wheel mouse, USB interface.

Printer (optional) – Thermal printer; fits in accessories pouch provided with instrument.

Keyboard – Order 119-7083-00 for small keyboard (fits in pouch); USB interface and hub.

Input/Output Ports

Front Panel

- **Probe Compensator Output** – Front panel pins.

Display Size

- **Display** – Diagonal: 307.3 mm (12.1 in.).
- **Display Resolution** – XGA 1280 horizontal x 768 vertical pixels.
- **Waveform Styles** – Vectors, Dots, Variable Persistence, Infinite Persistence.
- **Color Palettes** – Normal, Green, Gray, Temperature, Spectral and User-defined.
- **Display Format** – YT, XY.

Computer System and Peripherals

- **Operating System** – Windows XP.
- **CPU** – Intel Pentium 4, 3.4 GHz processor.
- **PC System Memory** – 2 GB.

Hard Disk Drive – Rear-panel, removable hard disk drive, 80 GB capacity.

CD-RW Drive – Front-panel CD-RW drive with CD creation software application.

DVD Drive – Read only.

Mouse – Optical wheel mouse, USB interface.

Printer (optional) – Thermal printer; fits in accessories pouch provided with instrument.

Keyboard – Order 119-7083-00 for small keyboard (fits in pouch); USB interface and hub.
Side Panel
Parallel Port – IEEE 1284, DB-25 connector.
Audio Ports – Miniature phone jacks (disabled).
Keyboard Port – PS/2 compatible.
Mouse Port – PS/2 compatible.
USB Ports – Four USB 2.0 connectors.
LAN Port – RJ-45 connector, supports 10Base-T, 100Base-T and Gigabit Ethernet.
Serial Port – DB-9 COM1 port.
VGA Video Port – DB-15 female connector; connect a second monitor to use dual-monitor display mode. Supports basic requirements of PC99 specifications.

Rear Panel
Power – 100 to 240 Vrms ± 10%, 47 to 63 Hz, <550 W
Analog Signal Output – BNC connector provides a buffered version of the signal that is attached to the Ch. 3 input.
Amplitude: 50 mV/div ±20% into a 1 MΩ load, 25 mV/div ±20% into a 50 Ω load.
Bandwidth: 100 MHz into a 50 Ω load.
Software-Switchable BNC Connector – External Time Base Reference Input: BNC connector, time base system can phase-lock to external 10 MHz reference.
Aux Trigger Output – BNC connector provides a TTL-compatible output of internal 10 MHz reference oscillator.

Physical Characteristics
Benchtop Configuration
Dimensions
Height: 292 mm, 11.48 in.
Width: 451 mm, 17.75 in.
Depth: 265 mm, 10.44 in.
Weight
Net: 15 kg, 32 lbs.
Shipping: 28.9 kg, 63.75 lbs.

Rackmount Configuration
Dimensions
Height: 323 mm, 12.25 in.
Width: 479 mm, 18.85 in.
Depth (from rack mounting ear to back of instrument): 231.75 mm, 9.12 in.
Weight
Net: 17.4 kg, 37.5 lbs.
Rackmount Kit: 2.5 kg, 5.5 lbs.

Environmental
Temperature –
Operating: 0 ºC to +50 ºC, excluding CD-R/W drive; +10 ºC to +45 ºC, including CD-R/W drive.
Non-operating: –40 ºC to +71 ºC.

Humidity
Operating – 5% to 95% relative humidity (RH) with a maximum wet bulb temperature of +29 ºC at or below +50 ºC, non-condensing. Upper limit derated to 45% RH above +30 ºC up to +50 ºC.
Non-operating – 5% to 95% relative humidity (RH) with a maximum wet bulb temperature of +29 ºC at or below +60 ºC, non-condensing. Upper limit derated to 45% RH above +30 ºC up to +50 ºC.

Altitude
Operating – 10,000 ft. (3,048 m).
Non-operating – 40,000 ft. (12,190 m).

Random Vibration
Operating – 0.000125 G^2/Hz from 5 to 350 Hz, –3 dB/octave from 350 to 500 Hz, 0.0000676 G^2/Hz at 500 Hz. Overall level of 0.27 GRMS.
Non-operating – 0.0175 G^2/Hz from 5 to 100 Hz, –3 dB/octave from 100 to 200 Hz, 0.00875 G^2/Hz from 200 to 350 Hz, –3 dB/octave from 350 to 500 Hz, 0.006132 G^2/Hz at 500 Hz. Overall level of 2.28 GRMS.

Regulatory
Certifications – UL 3111-1, CSA1010.1, ISO14669, EN61010-1, IEC 61010-1.
Digital Phosphor Oscilloscopes

DPO7000 Series

Ordering Information

DPO7054
500 MHz Digital Phosphor Oscilloscope.

DPO7104
1 GHz Digital Phosphor Oscilloscope.

DPO7254
2.5 GHz Digital Phosphor Oscilloscope.

DPO7354
3.5 GHz Digital Phosphor Oscilloscope for Serial and Digital applications.

All Models Include:
- Accessory pouch, front cover, mouse, quick start user manual (071-173x-xx), probe calibration and deskew fixture (067-0405-xx), DPO7000 Series product software media, DPO7000 Series operating system restoration media, Optional applications software media, performance verification procedure PDF file, GPIB programmer's reference (on product software media), calibration certificate documenting NIST traceability, Z 540-1 compliance and ISO9001, power cord, one-year warranty. User to specify quick start user manual language and power plug when ordering.

DPO7054 also includes:
- (4) P6139A 500 MHz, 10x passive probes. (Probes and accessories are not included in the oscilloscope warranty. Refer to the data sheet for each probe for its unique warranty and calibration terms.)

Options

Instrument Options

<table>
<thead>
<tr>
<th>Record Length Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt. 2RL</td>
</tr>
<tr>
<td>Opt. 5RL</td>
</tr>
<tr>
<td>Opt. 10RL (for DPO7054/DPO7354 only)*5</td>
</tr>
</tbody>
</table>

Hardware Options

| DPO7014: 40 GS/s (1 channel), 20 GS/s (2 channels), 10 GS/s (3 or 4 channels) |
| DPO7254: 20 GS/s (1 channel), 10 GS/s (2 channels), 5 GS/s (3 or 4 channels) |
| Opt. 1P: Thermal printer in the pouch |
| Printer option is available for all models |

Software Options

| DPO7014: 40 GS/s (1 channel), 20 GS/s (2 channels), 10 GS/s (3 or 4 channels) |
| DPO7254: 20 GS/s (1 channel), 10 GS/s (2 channels), 5 GS/s (3 or 4 channels) |
| Opt. LSA: Low Speed Serial Analysis includes CAN/LIN Trigger, Decode and Analysis |
| Opt. MTM: Mask Testing for Serial Communication Standards (up to 1.5 Gb/s) includes hardware clock recovery on DPO7254/DPO7354 |
| Opt. PTM (for DPO7254/DPO7354 only)*5: 8b/10b protocol triggering and NRZ serial pattern triggering, includes hardware clock recovery up to 1.5 Gb/s and pattern lock triggering |
| Opt. LT: Waveform Limit Testing |
| Opt. ASM: Advanced Event Search and Mark |
| Opt. ET3*3: TDSET3 Ethernet Compliance Test Software |
| Opt. USB*4: TDS/USB USB 2.0 Compliance Test Software only |
| Opt. PWR: DPOPWR Power Measurement and Analysis Software |
| Opt. RTE (for DPO7254/7354 only)*5: RT-Eye® Serial data compliance and analysis software |
| Opt. DVI (for DPO7354 only)*8: Digital Visual Interface compliance test software |

Bundle Options

| Opt. PS1: Power Bundle option includes TPA, BNC adapter, Probe Calibration and deskew fixture 067-1686-xx, PS205, TCP0030 and Opt. PWR |

14 Digital Phosphor Oscilloscopes • www.tektronix.com/oscilloscopes
User Manual Options

Power Plug Options
Opt. A2 – UK.

Service Options
(Probes and accessories are not included in the oscilloscope warranty. Refer to the data sheet for each probe for its unique warranty and calibration terms.)
Opt. C5 – Calibration Service 5 years.

Recommended Accessories
Probes
TCP202*6 – DC coupled current probe.
TCPD5000 – 500 MHz TekVPI™ high voltage differential probe.
TCP1000 – 1 GHz TekVPI high voltage differential probe.
TAP3500 – 3.5 GHz TekVPI active single-ended probe.
TAP2500 – 2.5 GHz TekVPI active single-ended probe.
TAP1500 – 1.5 GHz TekVPI active single-ended probe.
TCP0630 – >120 MHz TekVPI AC/DC 30 A current probe.

Cables
GPIB Cable (1 m) – Order 012-0991-01.
GPIB Cable (2 m) – Order 012-0991-00.
RS-232 Cable – Order 012-1298-00.
Centronics Cable – Order 012-1214-00.

Test Fixtures
TDSUSB – Test fixture for use with Opt. USB.
Probe Calibration/Power Deskew Fixture – Order 016-1987-00.
Ethernet Test Fixture – Order through Crescent Heart Software (http://www.c-h-s.com).

Adapters
MTM – To upgrade DPO7000 Series with Opt. MTM.
LSA – To upgrade DPO7000 Series with Opt. LSA.
LT – To upgrade DPO7000 Series with Opt. LT.

Instrument Upgrades
To upgrade your DPO7000 Series Oscilloscope, order option as noted:
DPO7UP with Opt. RL02 – To upgrade record length from standard configuration to Opt. 2RL configuration.
RL05 – To upgrade record length from standard configuration to Opt. 5RL configuration.
RL105* – To upgrade record length on DPO7254 or DPO7354 from standard configuration to Opt. 10RL configuration.
RL25 – To upgrade record length from Opt. 2RL configuration to Opt. 5RL configuration.
RL210* – To upgrade record length on DPO7254 or DPO7354 from Opt. 5RL configuration to Opt. 10RL configuration.
RL510* – To upgrade record length on DPO7254 or DPO7354 from Opt. 5RL configuration to Opt. 10RL configuration.
DV1* – To upgrade DPO7000 Series with Opt. DV1.
RTE5* – To upgrade DPO7000 Series with Opt. RTE or TDSRT-Eye software.
LSA – To upgrade DPO7000 Series with Opt. LSA.

Note: DPO7UP and all upgrade options require register activation.

Additional Options
- DVI*8 – To upgrade DPO7000 Series with Opt. DVI.
- MTM – To upgrade DPO7000 Series with Opt. MTM.
- LSA – To upgrade DPO7000 Series with Opt. LSA.
- LT – To upgrade DPO7000 Series with Opt. LT.
- ASM – To upgrade DPO7000 Series with Opt. ASM.
- ET3*3 – To upgrade DPO7000 Series with Opt. ET3.
- USB*4 – To upgrade DPO7000 Series with Opt. USB.
- PWR – To upgrade DPO7000 Series with Opt. PWR.
- PTM*5 – To upgrade DPO7000 Series with Opt. PTM.
- PWR – To upgrade DPO7000 Series with Opt. PWR.
- 1P – Thermal printer.
- 3P – Thermal printer.
- 1P – Thermal printer.
- 3P – Thermal printer.

Digital Phosphor Oscilloscopes • www.tektronix.com/oscilloscopes