Accurately characterize your Gbit systems and devices
Design and manufacture reliable Gbit transmission modules and system hardware

Use the HP 71600 Series of Gbit testers to measure bit error ratio (BER) and to verify the performance and quality of your components and system hardware.

- Lightwave submarine cable systems
- SONET/SDH synchronous network transmitters and receivers
- Gbit datacom serial links
- Lasers and photodetectors
- High-speed logic devices
- Optical amplifiers and modulators
- Decision circuits
- Multiplexers and output drivers.

For high-performance pattern generation and error analysis across the entire 100 Mb/s to 12 Gb/s range, use an HP 71612B error performance analyzer with optional low-rate clock.

Thoroughly test and verify device performance

When looking at pulse shapes, eye diagrams and waveform distortions, use the pattern generator with a high-speed oscilloscope from the HP 83480 Series for characterizing components up to 12 Gb/s.

Both pattern generator and error analyzer provide a wide range of PRBS and user-defined patterns, with versatile triggering facilities. And to help you identify the address of the errored bits use optional error location analysis. Once the position of an errored bit is identified, the flexible triggering features can be used to view the errored pattern on an oscilloscope for further diagnosis.

The HP 71600 Series of Gbit testers help you be more competitive in today’s rapidly developing global communications marketplace

- Exceptional waveform performance (even with reflective or poor terminations)
- Display maybe totally dedicated to pattern editing
- Error location analysis identifies individual errored bits in custom patterns; measure bit, block or total pattern BER
- Flexible pattern trigger allows oscilloscope to be triggered on any bit in custom pattern, allowing errored bits to be displayed on oscilloscope
- Cost effective addition of 12 Gb/s jitter analysis with the HP 71501C jitter analyzer
- Eye line display with HP 83480A communications analyzer
- Q measurement and eye-contour analysis with HP E4543A application software.
Create powerful, practical test patterns

Perform real-time editing of your longest test patterns, too. Use the efficient, on-screen pattern editor to copy, cut, and paste at the touch of a key, then save patterns to the non-volatile memory or to the integral flexible disk. The large CRT displays in binary or hex, as you wish.

Thoroughly stress test components and sub-systems

Use your own patterns that accurately represent the type of signal carried by a transmission system.

Simulate multiple SONET/SDH frames, and check out alarms and frame alignment circuits. The error performance analyzer has over 8 Mbit of user-programmable memory. This is large enough for your most complex, structured test patterns and ideal for up to six OC-192/STM-64 frames.

Efficiently edit and transfer patterns off-line

To help you start testing, we’ve included a disk with sample SONET/SDH frames and with clock-recovery stress patterns. In addition, use HP E4544A STM-64/OC-192 functional test application software with a personal computer off-line to create, edit, and store your own SONET/SDH test patterns. This way, it’s also easy to exchange test patterns among your other test stations.

Easily investigate pattern-dependent errors

It’s often important to know how devices and systems such as line terminals and multiplexers respond to sudden changes of pattern. So, use the “hitless” pattern switch to change error-free between two patterns. Each may be up to 4 Mbit long.

Improve productivity – set up and measure fast

The auto-decision error detector threshold setting, and auto-phase alignment simplify measurements for you.

They quickly and automatically locate the optimum decision point in the eye, clearly displaying eye width and height for user-defined error ratio thresholds.

View only the measurements of interest to you by building a display from any of the set of standard measurements.

Improve device performance specifications

When making accurate measurements on critical devices you need the very fast transition times and low jitter capability typical of an HP 71612B error performance analyzer.
A host of powerful additional capabilities

Simulate long-distance testing

Make reliable fiber cable tests by simulating long runs using a short fiber loop on the bench. The fast PRBS synchronization algorithm allows you to make reliable BER tests using burst gating. Now there’s no need for you to make up bulky and expensive cable drums for your fiber testing.

Fully evaluate system performance

You’ll find there is comprehensive bit error analysis to characterize performance fully. The simultaneous analysis of both errored ones and errored zeros is especially useful for locating sources of errors.

Quickly find out what effect those small circuit adjustments have on error ratio. The error-bar display with audio output provides an easy way for you to adjust devices for minimum errors without the need to interpret figures. And, continuously updated delta error count and delta error ratio measurements conveniently track each minor adjustment you make.

Flexible gating

Increase the value of long-term, unattended trials on prototype systems by defining total measurement period by time, number of bits received or number of errors measured. Print your choice of informative results summaries at regular intervals on an external printer.

Application software

Enhance the flexible gating capability with the HP E4543A application software to perform Q-factor measurements, or generate eye-contour diagrams to 10⁻²⁰ to reveal even the smallest degradations in the signal, quickly and efficiently.

Find out how to improve your products and reach tomorrow’s marketplace today
Go even further

Finally, extend your ability to evaluate system performance by adding the HP 71501C jitter analyzer to create a frequency agile jitter analysis system that can work at any rate up to 12 Gb/s.

For more information refer to related products section on rear cover.

Make Gbit test interfacing easy

When measuring device distortion, or testing differentially driven components, you will value the independent control you have of the pattern generator’s dc-coupled complementary clock and data outputs – indispensable for accurate characterization of optical devices.

To avoid damage when changing sensitive devices in test fixtures, use the data output on/off control to remove the data signal.

Error location analysis

Makes it easier for you to find the source of systematic errors — Vital when you’re under continuous pressure to develop more reliable high-speed components and subsystems.

• Bit BER
 Locate the cause of systematic errors causing a specific bit to change value. Just specify any bit in a user-defined pattern and perform bit error measurements upon it.

• Block BER
 Essential when trying to locate the cause of systematic errors which affect longer runs of bits, for example a corrupt header in a SONET or SDH frame. Perform bit error rate measurements on a range of bits within a user-defined pattern.

• Error-location capture
 Helps you discriminate between random and systematic errors. In a user-defined pattern, automatically highlight the position of each errored bit in turn – displaying the address of the errored bit – and show the surrounding bit pattern. Then automatically measure BER of each errored bit. If the error rate of a captured bit remains significant over a period, there is probably a pattern-dependent, systematic error.

If you’re responsible for the research, development or manufacturing test of Gbit lightwave and digital semiconductor components, devices and sub-systems, give HP a call — today.

Use HP E4543A application software to derive eye contours to 10⁻²⁹ BER from Q measurement.
HP 71612B error performance analyzer specifications

Items marked “typical” or “nominal” are supplemental characteristics intended to provide information useful in applying the instrument by giving typical but non-warranted, performance parameters.

Test patterns
- PRBS: $2^n - 1$, $2^{20} - 1$, $2^{30} - 1$, $2^{40} - 1$, $2^{50} - 1$.
- User-defined pattern: Up to 8 Mbit.
- Zero substitution: Extends the longest run of zeros up to pattern length less one bit on patterns 2^n, 2^{20}, 2^{30}, 2^{40}.
- Variable mark density ratio: 1/8 to 7/8 in 1/8 steps on patterns 2^6, 2^{16}, 2^{26}, 2^{36}.
- STM-64 and OC-192 patterns: Samples supplied on disk along with other stress patterns.

In the pattern generator, any pattern may be split into two equal-length patterns, with hitless switching between them. The user-defined patterns may be loaded from, or saved to, a 3½ inch, MS-DOS® format floppy disk.

Pattern generator
There are inputs for an external clock, external error inject, alternate-pattern switch and data output on/off switch.

There are outputs for clock and inverted clock, data and inverted data and pattern trigger, sub-rate (quarter-rate) clock; also four outputs for quarter-rate data.

Clock input
Frequency range: 100 MHz to 12 GHz.

Clock outputs – main
Frequency range: 100 MHz to 12 GHz.
Interface: Complementary, dc coupled, 50 ohms, reverse terminated NRZ, normal or inverted. (Independent control of outputs available).
Amplitude: 0.5 to 2 V p-p in 10 mV steps.
Transition times (10% to 90%): < 30 ps (typical at 2 V p-p).
Range: +1.5 to −3.0 V in 10 mV steps.
Clock/data delay: ±1 ns (100 MHz to 500 MHz), one clock period (500 MHz to 12 GHz).
Resolution: 1 ps.

Data outputs – main
Interface: Complementary, dc coupled, 50 ohms, reverse terminated NRZ, normal or inverted. (Independent control of outputs available).
Amplitude: 0.5 to 2 V p-p in 10 mV steps.
Transition times (10% to 90%): < 30 ps (typical at 2 V p-p).
Range: +1.5 to −3.0 V in 10 mV steps.
Clock/data delay: ±1 ns (100 MHz to 500 MHz), one clock period (500 MHz to 12 GHz).
Resolution: 1 ps.

Clock and data outputs – subrate
Frequency range: ¼ of main clock rate.
Interface: dc coupled, 50 ohms, reverse terminated.
Amplitude: 0.5 to 1 V p-p in 10 mV steps.
Range: 0 to −2.0 V in 10 mV steps.
Trigger output: Pattern; clock/32; clock/8.

Error add
Internal: Single on command, or fixed ratio 1 in 10^n bits, where $n = 3$ to 9.
External: TTL levels (active low).

Error detector
The error detector has clock and data inputs and an output which inhibits error counting. There are outputs for errors and pattern trigger. The error detector has both manual and automatic setting of decision threshold and clock/data phase alignment.

Clock input
Frequency range: 100 MHz to 12 GHz.
Interface: 0.45 to 0.90 V p-p dc coupled, 50 ohms. (≤ 10 GHz), 0.65 to 0.9 V p-p (< 10 GHz).

Clock output
Frequency range: 100 MHz to 12 GHz.
Interface: Complementary, dc coupled, 50 ohms, reverse terminated. (Independent control of outputs available).
Amplitude: 0.5 to 2 V p-p in 10 mV steps.
Range: +1.5 to −3.0 V in 10 mV steps.

Data input
Sensitivity: < 50 mV p-p (typical for $2^n - 1$ PRBS input at 10 Gb/s, 0 V high level).
Impedance: 50 ohms to 0 V or −2 V, dc coupled.
Decision threshold range: +1 to −3 V in 1 mV steps.
Clock/data phase alignment: ±1 ns (100 MHz to 500 MHz); 1 clock period (500 MHz to 12 GHz).
Resolution: 1 ps.

Trigger output: Pattern or clock/8.
Error output: 0 to −0.4 V nominal.

Measurement period: 1 s to 100 days; 10, 100, 1000 errors; 107 to 1015 bits.

Pattern synchronization: Automatic or manual.
Selectible threshold: 10^{-1} to 10^{-6}.

Audible output: Proportional to error ratio.

Result logging: Time-stamped results to an external printer.

Clock source
The standard integral clock source has a clock output and an external reference input. It provides a variable-frequency, synthesized clock signal to the pattern generator.

See HP 70340A signal generator data sheet for full specifications

Frequency range: 1 to 20 GHz.
Resolution: 1 kHz.

Measurements
- Error count and ratio for:
 errored ones
 errored zeros
 all logic errors
- Errored and error-free intervals of:
 seconds
deciseconds
centiseconds
milliseconds
- Clock frequency
- Error location analysis (optional)
 Specific bit BER
 Bit BER
 Bit error count
 Delta bit BER
 Delta bit error count
 Block BER
 Error location capture
Ordering information

12 Gb/s BER measurement and analysis systems

All provide mainframe, color display with integral keypad, base unit, set of operating and installation manuals.

HP 71612B option UHF: 1 to 12 Gb/s error performance analyzer system with pattern generator, error detector and clock source.

HP 71612B option UHG: 1 to 12 Gb/s system with pattern generator and clock source (no error detector provided).

HP 71612B option UHH: 0.1 to 12 Gb/s error detector (no pattern generator or clock source).

Error location analysis
HP 71612B option UHJ: Adds enhanced error detection to help identify sources of systematic errors.
Do not order with option UHG.

No clock source
HP 71612B option UKC: Deletes clock source.
Do not order with option UHH.

HP 71612B option 806: Replaces HP 70340A standard clock source (1 to 12 Gb/s) with HP 83752A clock source (0.1 to 12 Gb/s), extending the operation of the system down to 100 Mb/s.

12 Gb/s BER measurement and analysis system – without display and clock source

All provide base unit, set of operating and installation manuals.

If you have your own MMS display and clock source, or you wish to build your own test bays, order only the parts you need for your 12 GHz applications.

HP 70843B option UHF: 0.1 to 12 Gb/s error performance analyzer with pattern generator and error detector (no clock source provided).

HP 70843B option UHG: 0.1 to 12 Gb/s system with pattern generator only (no error detector or clock source provided).

HP 70843B option UHH: 0.1 to 12 Gb/s system with error detector only (no pattern generator or clock source provided).

Error location analysis.
HP 70843B option UHJ: Adds enhanced error location analysis to help identify sources of systematic errors.
Do not order with option UHG.

Accessories
Available for both HP 71612B and 70843B analyzers.

Option 0B1: Extra set of manuals.
Option 1CM: Rack mount kit without front handles fitted.
Option 1CP: Rack mount kit with front handles fitted.
Option +W30: Two years additional hardware support beyond the standard one-year warranty.

Note: If you have already purchased pattern generator-only or error detector-only units (options UHG or UHH) and wish to upgrade these to full analysis systems (option UHF), factory retrofits are available. Please contact your HP representative for further details.
Hewlett-Packard manufactures the HP 71612B/70843B analyzers under a quality system approved to the international standard ISO 9002 plus TickIT (BSI Registration Certificate No FM 10987).

MS-DOS is a US registered trademark of Microsoft Corporation.

Related literature

<table>
<thead>
<tr>
<th>Product/Module</th>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP E4544A STM-64/OC-192 functional test application software</td>
<td>Profile</td>
<td>5965-6411E</td>
</tr>
<tr>
<td>HP E4543A Q-factor and eye-contour application software</td>
<td>Profile</td>
<td>5965-6412E</td>
</tr>
<tr>
<td>Locating errors in Gigabit transmission systems and components</td>
<td>Technique</td>
<td>5906-2811E</td>
</tr>
<tr>
<td>Testing 10 Gb/s SONET/SDH equipment and components</td>
<td>Technique</td>
<td>5068-2812E</td>
</tr>
<tr>
<td>Methods for faster high-speed digital communications design</td>
<td>Brochure</td>
<td>5066-4258E</td>
</tr>
<tr>
<td>Frequency agile jitter measurement system</td>
<td>Application Note 1267</td>
<td>5063-5353E</td>
</tr>
<tr>
<td>HP 71501C jitter analysis system</td>
<td>Product Overview</td>
<td>5065-0801E</td>
</tr>
<tr>
<td>HP 83480A Series digital communications analyzer</td>
<td>Product Overview</td>
<td>5064-2238E</td>
</tr>
</tbody>
</table>

For more information about Hewlett-Packard test & measurement products, applications, services, and for a current sales office listing, visit our web site, http://www.hp.com/go/tmdir. You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:
Hewlett-Packard Company
Test and Measurement Call Center
P.O. Box 4026
Englewood, CO 80155-4026
1 800 452 4844

Canada:
Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
1 877 894 4414

Europe:
Hewlett-Packard
European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(31 20) 547 9999

Japan:
Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachiouji-Shi
Tokyo 192-8510, Japan
Tel: (81) 426 56-7832
Fax: (81) 426 56-7840

Latin America:
Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive, 9th Floor
Miami, Florida 33126
USA
(305) 267 4245/4220
Fax: (305) 267-4288

Australia/New Zealand:
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Australia
Tel: 1 800 629 485 (Australia)
Tel: 0800 738 378 (New Zealand)
Fax: (61 3) 9210 5489

Asia Pacific:
Hewlett-Packard Asia Pacific Ltd.
17-21/F Shell Tower, Times Square
1 Matheson Street, Causeway Bay
Hong Kong
Tel: (852) 2599 7777
Fax: (852) 2506 9285

© Hewlett-Packard Limited 1999

Printed in USA
Data subject to change
5968-2810E 02/99